Question (Banerjee et al., 2014)
Suppose \(Y_{1}\) and \(Y_{2}\) are both binary variables, and that their joint distribution is defined through conditional logit models. That is,
\[\begin{equation*} \begin{array}{lclllll} \log \left[ \dfrac{p(Y_{1} = 1 | Y_{2})}{p(Y_{1} = 0 | Y_{2})} \right] & = & \alpha_{0} + \alpha_{1}Y_{2} & \mbox{and} & \log \left[ \dfrac{p(Y_{2} = 1 | Y_{1})}{p(Y_{2} = 0 | Y_{1})} \right] & = & \beta_{0} + \beta_{1}Y_{1}\\[12pt] \end{array} \end{equation*}\]Obtain the joint distribution of \(Y_{1}\) and \(Y_{2}\).
Answer:
Given the following logits:
\[\begin{equation*} \begin{array}{lclllll} \log \left[ \dfrac{p(Y_{1} = 1 | Y_{2})}{p(Y_{1} = 0 | Y_{2})} \right] & = & \alpha_{0} + \alpha_{1}Y_{2} & , & \log \left[ \dfrac{p(Y_{2} = 1 | Y_{1})}{p(Y_{2} = 0 | Y_{1})} \right] & = & \beta_{0} + \beta_{1}Y_{1}\\[12pt] \end{array} \end{equation*}\]We will obtain the joint distribution \(p(Y_{1}, Y_{2})\) using the Lemma of Brook. Therefore, as a result of the Lemma of Brook, we have that:
\[\begin{equation*} \begin{array}{lrlll} p(Y_{1}, Y_{2}) & = &\dfrac{p(Y_{1}|Y_{2})}{p(Y_{1}=y_{1,0}|Y_{2})}\cdot \dfrac{p(Y_{2}|Y_{1}=y_{1,0})}{p(Y_{2}=y_{2,0}|Y_{1}=y_{1,0})}\cdot p(Y_{1}=y_{1,0}, Y_{2}=y_{2,0})\\[15pt] \end{array} \end{equation*}\]In this question, we will use \(Y_{0}\) = (\(y_{1,0}=0, y_{2,0}=0\)), In other words, the expression of the joint distribution above will be:
\[\begin{equation*} \begin{array}{lrlll} p(Y_{1}, Y_{2}) & = &\dfrac{p(Y_{1}|Y_{2})}{p(Y_{1}=0|Y_{2})}\cdot \dfrac{p(Y_{2}|Y_{1}=0)}{p(Y_{2}=0|Y_{1}=0)}\cdot p(Y_{1}=0, Y_{2}=0) \\[12pt] \end{array} \end{equation*}\]Therefore, since the random variables \(Y_{1}\) and \(Y_{2}\) are binary and considering some results from the logit function, we can arrive at the following expressions:
\[\begin{equation*} \begin{array}{lclllll} \dfrac{p(Y_{1} = 1 | Y_{2})}{p(Y_{1} = 0 | Y_{2})} & = & \exp{\{\alpha_{0} + \alpha_{1}Y_{2}\}} & , & \dfrac{p(Y_{2} = 1 | Y_{1})}{p(Y_{2} = 0 | Y_{1})} & = & \exp{\{\beta_{0} + \beta_{1}Y_{1}\}}\\[12pt] \end{array} \end{equation*}\]where,
\[\begin{equation*} \begin{array}{lclllll} p(Y_{1} = 1 | Y_{2}) & = & \dfrac{\exp{\{\alpha_{0} + \alpha_{1}Y_{2}\}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}Y_{2}\}}} \\[15pt] p(Y_{2} = 1 | Y_{1}) & = & \dfrac{\exp{\{\beta_{0} + \beta_{1}Y_{1}\}}}{1 + \exp{\{\beta_{0} + \beta_{1}Y_{1}\}}}\\[12pt] \end{array} \end{equation*}\]thus, we can obtain:
\[\begin{equation*} \begin{array}{lclllll} p(Y_{1} = y_{1} | Y_{2} = y_{2}) & = & \left[\dfrac{\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{y_{1}}\left[1 - \dfrac{\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{1 - y_{1}} \\[15pt] & = & \left[\dfrac{\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{y_{1}}\left[\dfrac{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\} - \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{1 - y_{1}} \\[15pt] & = & \left[\dfrac{\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{y_{1}}\left[\dfrac{1}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}\right]^{1 - y_{1}} \\[15pt] & = & \left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}}\left(1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{-y_{1} - 1 + y_{1}} \\[15pt] & = & \dfrac{\left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}}}{\left(1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)} \\[15pt] \end{array} \end{equation*}\]Similarly, we can obtain the result for \(p(Y_{2}=y_{2}|Y_{1})\), which is given by:
\[\begin{equation*} \begin{array}{lclllll} p(Y_{2} = y_{2} | Y_{1} = y_{1}) & = & \left[\dfrac{\exp{\{\beta_{0} + \beta_{1}y_{1}\}}}{1 + \exp{\{\beta_{0} + \beta_{1}y_{1}\}}}\right]^{y_{2}}\left[1 - \dfrac{\exp{\{\beta_{0} + \beta_{1}y_{1}\}}}{1 + \exp{\{\beta_{0} + \beta_{1}y_{1}\}}}\right]^{1 - y_{2}} \\[15pt] & = & \left[\dfrac{\exp{\{\beta_{0} + \beta_{1}y_{1}\}}}{1 + \exp{\{\beta_{0} + \beta_{1}y_{1}\}}}\right]^{y_{2}}\left[\dfrac{1}{1 + \exp{\{\beta_{0} + \beta_{1}y_{1}\}}}\right]^{1 - y_{2}} \\[15pt] & = & \dfrac{\left(\exp{\{\beta_{0} + \beta_{1}y_{1}\}}\right)^{y_{2}}}{\left(1 + \exp{\{\beta_{0} + \beta_{1}y_{1}\}}\right)} \\[15pt] \end{array} \end{equation*}\]Using the derived expressions, we can obtain the joint distribution \(p(Y_{1}, Y_{2})\):
\[\begin{equation*} \begin{array}{lrlll} p(Y_{1} = y_{1}, Y_{2} = y_{2}) & = &\dfrac{p(Y_{1}= y_{1}|Y_{2}= y_{2})}{p(Y_{1}=0|Y_{2}= y_{2})}\cdot \dfrac{p(Y_{2}=y_{2}|Y_{1}=0)}{p(Y_{2}=0|Y_{1}=0)}\cdot p(Y_{1}=0, Y_{2}=0) \\[15pt] & = & \dfrac{\dfrac{\left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}}}{\left(1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)}}{\dfrac{1}{1 + \exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}}} \cdot \dfrac{\dfrac{\left(\exp{\{\beta_{0}\}}\right)^{y_{2}}}{\left(1 + \exp{\{\beta_{0}\}}\right)}}{\dfrac{1}{\left(1 + \exp{\{\beta_{0}\}}\right)}} \cdot p(Y_{1}=0, Y_{2}=0) \\[25pt] & = & \left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}} \cdot \left(\exp{\{\beta_{0}\}}\right)^{y_{2}} \cdot p(Y_{1}=0, Y_{2}=0) \\[15pt] \end{array} \end{equation*}\]Now, we can find \(p(Y_{1}=0, Y_{2}=0)\), since we have that,
\[\begin{equation*} \begin{array}{rclllll} \displaystyle\sum_{y_{1}=0}^{1} \displaystyle\sum_{y_{2}=0}^{1}p(Y_{1} = y_{1}, Y_{2} = y_{2}) & = & 1\\[15pt] \end{array} \end{equation*}\]thus,
\[\begin{equation*} \begin{array}{rclllll} \displaystyle\sum_{y_{1}=0}^{1} \displaystyle\sum_{y_{2}=0}^{1}\left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}} \cdot \left(\exp{\{\beta_{0}\}}\right)^{y_{2}} \cdot p(Y_{1}=0, Y_{2}=0) & = & 1\\[15pt] \end{array} \end{equation*}\] \[\begin{equation*} \begin{array}{rclllll} p(Y_{1}=0, Y_{2}=0) \left[ \left(\exp{\{\alpha_{0} + \alpha_{1}\cdot0\}}\right)^{0} \cdot \left(\exp{\{\beta_{0}\}}\right)^{0} \right. + \\[15pt] \left. + \left(\exp{\{\alpha_{0} + \alpha_{1}\cdot 0\}}\right)^{1} \cdot \left(\exp{\{\beta_{0}\}}\right)^{0} + \left(\exp{\{\alpha_{0} + \alpha_{1}\cdot 1\}}\right)^{0} \cdot \left(\exp{\{\beta_{0}\}}\right)^{1}\right] . + \\[15pt] \left. + \left(\exp{\{\alpha_{0} + \alpha_{1}\cdot 1\}}\right)^{1} \cdot \left(\exp{\{\beta_{0}\}}\right)^{1}\right] & = & 1\\[15pt] \end{array} \end{equation*}\]Hence, we can conclude that \(p(Y_{1}=0, Y_{2}=0)\) is given by,
\[\begin{equation*} \begin{array}{lrlll} p(Y_{1}=0, Y_{2}=0) & = & \left[1 + \exp{\{\alpha_{0}\}} + \exp{\{\beta_{0}\}} + \exp{\{\alpha_{0} + \alpha_{1}\}}\exp{\{\beta_{0}\}}\right]^{-1}\\[15pt] \end{array} \end{equation*}\]Therefore, using all the results obtained, it follows that the joint distribution \(p(Y_{1}, Y_{2})\) is given by:
\[\begin{equation*} \begin{array}{lrlll} p(Y_{1} = y_{1}, Y_{2} = y_{2}) & = & \left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}} \cdot \left(\exp{\{\beta_{0}\}}\right)^{y_{2}} \cdot p(Y_{1}=0, Y_{2}=0) \\[15pt] p(Y_{1} = y_{1}, Y_{2} = y_{2}) & = & \dfrac{\left(\exp{\{\alpha_{0} + \alpha_{1}y_{2}\}}\right)^{y_{1}} \cdot \left(\exp{\{\beta_{0}\}}\right)^{y_{2}}}{\left[1 + \exp{\{\alpha_{0}\}} + \exp{\{\beta_{0}\}} + \exp{\{\alpha_{0} + \alpha_{1}\}}\exp{\{\beta_{0}\}}\right]} \\[15pt] \end{array} \end{equation*} \]References
Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. CRC press.